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The activation areas for creep deformation are collected and examined in the light of many 
material and deformation variables. The activation area is A* = (kT/b) (~ In~/&-*)r 
where k is Boltzmann's constant, T the absolute temperature, b the Burgers vector, 

the steady state creep rate, and r* the effective shear stress. It is found that within 
a factor of 5, there is a general correlation between activation area and stress for all 
metals, alloys, semiconductors and ionic crystals. A jog-limited dislocation motion 
with a distribution of jog spacings is suggested as a possible mechanism for this 
behaviour. Some limitations for the jog mechanism are discussed. 

1. Introduction 
The concept of thermally activated processes has 
been very helpful in the investigations of rate- 
controlling mechanisms of plastic deformation. 
For instance, activation enthalpy and its stress- 
dependence [1, 2] are used extensively in low- 
temperature deformation to compare with 
various mechanisms such as Peierls mechanism, 
impurity mechanism and intersection mechan- 
ism. In high-temperature creep, however, the 
concept of thermal activation is only partially 
applied in the sense that the contribution of 
stress to the activation process is neglected. The 
activation enthalpy [3] and activation volume 
[4, 5] for creep have been shown to equal those 
for self-diffusion. As a consequence, it is now a 
requirement for all theories of creep that self- 
diffusion be considered the rate-controlling step. 
Both these activation parameters are calculated 
assuming constant dislocation structure, i.e. the 
effect of temperature and pressure is assumed 
not to cause any dislocation rearrangement. The 
effect of stress on the other hand is considered in 
all existing theories of creep to change the dis- 
location structure. It is not obvious why the 
dislocation structure should respond instantly to 
stress and not to temperature and pressure. 
Following the practice in low-temperature de- 

formation, in this paper the dislocation structure 
is assumed to remain essentially constant during 
a change of temperature, pressure, or stress. The 
analysis is identical to that of low-temperature 
deformation and is described as follows: 

The creep rate is expressed as 

= ~c exp ( -A F * /k T)  (1) 
where AF* is the standard free energy of activa- 
tion, ie is the maximum attainable creep rate at 
AF* = O, k is the Boltzmann constant and T is 
absolute temperature. In terms of a dislocation 
mechanism, ie contains the density of mobile 
dislocations, a gemoteric factor, and the maxi- 
mum attainable velocity at A F ;  = O. 

Based on the assumption of a single rate 
process represented by equation l, the tempera- 
ture, pressure, and the stress-dependence of  
creep rate are related to the following activation 
parameters: 

In 4 1 ~ ( A F ~ / T )  A H * .  
. . . .  (2) 

a~r - ~T= a (1 / T )  k r = '  

in4  1 8AF*  A V *  . 

~P kT ~P -- kT ' (3) 

In ~ 1 #AF* A * b .  
Or* - -  k T  8r*  - -  k T '  (4) 

* Now at Materials Research Centre, Allied Chemical Corporation, Morristown, New Jersey, USA, 
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where A H  +~ is the activation enthalpy, A V* is the 
activation volume, A* is the activation area, and 
b is the Burgers vector of the dislocation. In 
deriving these equations, two assumptions have 
been made: (i) The quantity ie is regarded as 
constant and independent of temperature, pres- 
sure, or stress. If this is not so, d should be re- 
placed by i/de in equations 2, 3 and 4. (ii) The 
creep rate should be so high that the rate in the 
reverse direction may be neglected. This will be 
discussed in more detail later. 

The quantity A*b is unfortunately also called 
the activation volume in low-temperature de- 
formation. To avoid confusion with the pressure 
derivative of the activation free energy, the 
quantity A* is here called the activation area, to 
be discussed in detail later. While the activation 
enthalpy and the activation volume are well- 
accepted quantities in creep, the activation area 
has not been used, despite the fact that it is 
widely used in low-temperature deformation 
(under the name activation volume). It is the 
purpose of this paper to explore this quantity in 
high-temperature creep (T > Tin/2) but not in 
the range of  Nabarro-Herring creep [6, 7]. 

2. The  Act ivat ion Area 
It is suggested by equation 4 that the applied 
stress can contribute to the activation free 
energy. Exactly how this is so depends on the 
details of the mechanism. For  example, in 
Nabarro-Herring [6, 7] creep, the mechanism is 
the motion of vacancies between sources and 
sinks. The external stress changes the free energy, 
or the chemical potential of vacancies by an 
amount crV where c~ is the normal stress and V 
is the atomic volume. According to this mechan- 
ism, the quantity A*b should be of the order of 
atomic volume. 

On the other hand, if the creep mechanism is 
due to the motion of dislocations, the external 
stress can contribute to the activation free energy 
by helping the dislocation to cross the energy 
barrier. This process is illustrated in fig. 1 for a 
jog mechanism. The nature of the barrier is imo 
material for this illustration. The jogs are indi- 
cated by short dotted segments to show that 
they are not in the slip plane of the dislocation. 
The circles are vacancies about to be absorbed 
or emitted. The dislocation segment between the 
jogs is assumed free and flexible so that it displays 
a curvature consistent with the shear stress 
applied in the slip plane. 

The free energy of the dislocation is shown 

schematically in fig. 1 as a function of its posi- 
tion designated as the area swept by the dislo- 
cation from its rest configuration at zero stress. 
The free energy is for that portion of the dislo- 
cation which associates with and contributes to 
the overcoming of one jog barrier. Since the 
dislocation is passing over a barrier (dragging a 
jog, slipping past an impurity atom, cutting 
another dislocation, crossing the Peierls hill, etc.) 
its free energy must increase in the vicinity of 
the barrier, reach a maximum, and then decrease 
after it passes over the barrier. I f  this process is 
achieved reversibly by the external stress, the 
shear stress is proportional to the slope of 
the free energy-area curve, since -r*bdA is the 
reversible work done by the shear stress ~-* while 
the dislocation sweeps an infinitesimal area dA. 
The shear stress to maintain any dislocation 
position is thus also a function of the area 
swept by the dislocation from its rest config- 
uration at zero stress as shown in fig. 1. 
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Figure I Schemat i c  i l lus t ra t ion of  ac t iva t ion  area in a jog  

mechan ism of  creep. 

Frequently the thermally-activated dislocation 
process is described in terms of a force-distance 
relation at the barrier. The activation area is 
then given by x L  where x is the distance moved 
by the dislocation at the barrier and L is the 
length of the segment between barriers. How- 
ever, this formulation is strictly true only for 
straight dislocations or at most for a situation in 
which the shape of  the dislocation segment 
between barriers is independent of stress. To 
deal with a more realistic situation in which the 
curvature of the segment between barriers may 
depend on the applied stress, the area swept by 
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the portion of the dislocation which is directly 
involved in the overcoming of the barrier, is 
used to define the position of  the dislocation 
instead of the distance advanced at the barrier. 

Let us suppose that the external stress is 
sufficient only to maintain the dislocation con- 
figuration at position 2 in fig. 1. In order to pass 
over the barrier, the dislocation must receive an 
amount of activation free energy sufficient to 
bring it to position-4 after which the dislocation 
can pass over the barrier by the external stress 
alone. The area swept by the dislocation between 
the positions 2 and 4 (shaded area in fig. 1) for 
each activation event is defined as the activation 
area, A*. (It may be worth mentioning here that 
this is not the area swept by the dislocation after 
the activation process.) It is seen from the fore- 
going considerations that 

I q ' c *  

= A*d~-* (5) AF*" b Jr* 

where ~'e* is the maximum shear stress, namely, 
that required to maintain the dislocation at 
position 3. Equation 5 shows that 

~AF*/D-r* ~ - A*b (6) 

which is another definition of activation area. 
The fact that the activation area is not a constant 
and must depend on the stress is quite obvious 
from fig. 1 for any reasonable free energy-area 
relationship. 

Equation 5 can be rewritten as 

AF* = AFo* - b fo*A*d-c* (7) 

where AFo* is AF* at -r* = 0. For  very small ~-* 
so that A* is nearly the same as A0* at -r* = 0, 

AF* = AFo ++ - b'r* A0* (8) 

A substitution of  equation 1 into equation 8 
suggests that the forward rate is increased by a 
factor exp (b-r* A*/kT)  from the normal vibra- 
tion rate of the dislocation and that the reverse 
rate is decreased by a factor ofexp ( -  b~-* A*/kT) .  
The net creep rate is then 

b-r* A* 
= 2r exp (-AFo*/kT) sinh k ~  (9) 

which has the following stress-dependence: 

In ~ _ bA* A* 
~-* k ~  coth b ' r ;T (10) 

It is seen that equation 10 agrees with equation 4 
only if bT* A * / k T  is sufficiently large so that the 

4 3 6  

hyperbolic cotangent function is nearly unity. 
Otherwise a correction has to be made as shown 
in fig. 2. When m = ~ In ~/~ In z* is nearly unity, 
it is not possible to determine A* accurately. 
Therefore, this analysis breaks down in the 
range of Nabarro-Herring creep. Fortunately, in 
most creep studies, m > 2, then equation 4 is 
applicable. 
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Figure 2 Calculat ion of act ivat ion area f rom the s t ress-  
dependence of creep rate, equat ion 10. 

3. T h e  Effect of Material  and 
Deformat ion  Var iables  on the 
Act iva t ion  Area  

The activation area for secondary creep is 
calculated using equation 4 from literature data 
on the stress-dependence of creep rate and 
plotted as a function of applied shear stress in 
figs. 3 to 14. For polycrystals one-half of the 
tensile stress is used. In all these calculations an 
internal stress, ~-i has to be subtracted from the 
applied stress, % to get the effective stress -r* and 
the activation area must be expressed as a 
function of effective stress. Li [5] has shown that 
in the presence of internal stress tile apparent 
activation area is higher than the true activation 
area. Hence a correction for internal stress 
would lower all curves. This will be explicitly 
shown in the case of stainless steel where the only 
available data on internal stress for high- 
temperature creep have been obtained recently 
by Cuddy [8]. 
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figure 3 Activation area for the creep of lead and lead 
alloys. Pb (0.5 to 16% Bi) grain size 0.3 to 2 ram; Pb 
(3.5 to 31% In) 0.3 to 2 mm; Pb (1.8 to 4.8% Cd) 0.05 to 
2 mm; Pb (4.4 to 19% Sn) 0.3 to 2 mm; pure Pb, single 
crystal, 

3.1. Pb and Pb A l loys ,  Effect of Compos i t ion  
and Grain Size 

Fig. 3 shows the activation areas for single 
crystal Pb and polycrystalline Pb alloys of grain 
sizes ranging between 0.05 and 2 mm. The activa- 
tion areas are calculated from Weertman's  data 
at 573 ~ K [9]. It  is seen that the activation area 
is a strong function of stress, but is only weakly 
dependent on composition or grain size within 
the range studied. The exact relation between 
activation area and stress depends on the shape 
of the energy barrier as shown in fig. 1. The in- 
verse proportionality between activation area 
and stress in fig. 3 is a consequence of the experi- 
mentally observed power law relation between 
secondary creep rate and stress in the particular 
range of stress investigated. The present treat- 
ment, however, is not restricted to cases where 
such a power law is obeyed. Alternate relation- 
ships between creep rate and stress and conse- 
quently between activation area and stress are 
discussed later in this paper. 

3.2. AI  and A I - M g  A l loys ,  Effect of 
Compos i t ion  and Tempera ture  

Fig. 4 shows the activation areas for A1 and 
AI -Mg alloys. For  A1, Weertman [10] obtained 
data in the temperature range 430 to 890 ~ K. 
Harper  and Dorn  [11 ] extended the investigation 
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Figure 4 Activation area for the creep of aluminium and 
aluminium alloys. - - ,  aluminiurn; - - A - - ,  aluminium 
11% Mg; . . . . .  , aluminium 2% Mg; - - - - - ,  aluminium 
3.1% M g ; -  �9 --, alurninium stress-cycling. 

to 920 ~ K close to the melting point, and this 
enabled them to obtain data at stresses down to 
0.0025 kg m m  -2. Data  at lower temperatures, 
477 to 533 ~ K, were obtained by Servi and Grant  
[12]. More recently Mitra and McLean [13] 
obtained data at 523 ~ K both by stress-cycling 
and in the usual way of running steady state 
tests on individual specimens at different stresses. 
The activation areas are lower in the latter case. 

For  AI -Mg alloys, Laks et al [14] studied 
A I - I . 1 %  Mg alloy at 753 ~ K. Dushman et al 
[15] studied A1-2% Mg alloy at 573 ~ K and 
Dorn [16] reported on A1-3.1% Mg alloy at 
532 ~ K. 

It  is seen f rom fig. 4 that the activation area 
depends more on stress than on temperature or 
composition. 
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Figure 5 Ac t i va t i on  area fo r  the creep of  copper  and 

b rass ;  - - ,  copper ;  ver t ica l  hatch ing,  c~-brass, 856 to 

973 ~ K; d iagona l  hatching,  /3-brass (ordered)  603 to 

723 ~ K; . . . . .  , /3-brass (d isordered)  759 to 779 ~ K. 
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3.3. Cu a n d  B r a s s e s ,  Effect of Stacking 
Fault Energy and Long Range Order 

Fig. 5 shows the activation areas for Cu and 
Cu-Zn alloys. For Cu, Barrett and Sherby [17] 
studied the temperature range 770 to 1159 ~ K. 
The activation areas calculated from the data of 
Feltham and Meakin [18] between 673 and 
973 ~ K were presented [5] before* and agreed 
well with those of Barrett and Sherby. To study 
the effect of stacking fault energy on creep, 
Bonesteel and Sherby [19] investigated c~-brasses 
with 10, 20, and 3 0 ~  Zn in the temperature 
range 825 to 973 ~ K and Feltham and Copley 
[20] studied the same brasses between 823 and 
873~ K. It is seen from fig. 5 that the activation 
areas do not depend on stacking fault energy 
although the creep rates do. The effect of order- 
ing on the creep of fi-brasses of 50 ~ Zn was 
examined by Herman and Brown [21] in the 
stress range 0.05 to 0.5 kg mm -= and the tem- 
perature range 603 to 770 ~ K. More recently 
Brown and Lenton [22] repeated these experi- 
ments in single crystals and their data are  in- 
cluded in fig. 5 also. It is seen that the activation 
areas are not affected by long-range order even 
though the creep rates are. 

103 - -  ' I 

temperature range 335 to 525 ~ K covers both the 
hcp and bcc phases, since the transformation 
temperature is 503 ~ K. It is seen from fig. 6 that 
the effect of crystal structure on the activation 
area is small. 
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Figure 7 Activation area for the creep of silver and silver 
alloys: vertical hatched area, Ag polycrystals; ~ ,  Ag 
33~o AI; - - - ,  Ag 33~o AI 1~/o Zn. 

% 
o 

b 
io ~ 

< 

"7 
10 

0.01 

'% 

~ 4 8 8 ~  
4 6 ~  ~ ' ~  

I I I_ 
0.02 o.os o.Rs o'o7 o., 5.2 o.s 

SHEAR STRESS, kg/ram 2 

Figure 6 Activation area for the creep of thallium; data 
of O. D. Sherby. - - ,  ~-Tl; . . . .  , fl-Tl. 

3.4. ~ and fi-Tl, Effect of Crystal Structure 
Fig. 6 shows the activation areas for c~ and/?-T1 
calculated from the data of Sherby [23]. The 

3.5. Ag and Ag Alloys, Effect of High 
Concentration 

Fig. 7 shows the activation areas for Ag and Ag 
alloys. Spectroscopically pure (99.97~) silver 
with an average grain size of 0.21 mm was studied 
by Munson and Huggins [24] at 1064 to 1136 ~ K 
using a constant load technique. Prismatic slip 
in single crystals of A g - 3 3 ~  A1 and Ag-33 
AI-1 ~ Zn alloys was studied by Howard et aI 
[25] at 481 to 649 ~ K. It is seen that despite the 
difference in temperature, grain size, crystal 
structure, and composition, the activation area 
differs by less than a factor of  3. 

3.6. Ni and Ni Alloys, Effect of Magnetic 
Transformation 

Fig. 8 shows the activation areas for Ni and Ni 
alloys. For Ni the data of Weertman and 
Shahnian [26] at 1373 ~ K and those of Dennison 
et al [27] at 873 o K are used. The latter authors 
obtained data also on Ni-Cr  alloys with 1.I to 

* We take this opportunity to correct some errors in [5]. In figs. 4 and 5, the activation areas should be multiplied 
by a factor of 4. On p. 98, third line below fig. 5, 20b 2 should be 80b ~. In equation 34, the T outside the parentheses 
should be moved up so it multiplies the quantity in the parentheses. 
4 3 8  
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Figure 8 Act ivat ion area for the creep of nickel and nickel 
al loys: vertical hatched area, Ni (13 to 90% Au),  1133 ~ K; 
. . . . .  NiaFe, 840 to g64 ~ K ; - - - -  Ni, 13730 K, 873 ~ K; Au, 
1133~ - - -  Ni (1.1 to 28.8?/o Cr), 873~ - - Q - - ,  
NisoFe2o, 840 to 964 ~ K. 

28.8 % Cr at 873 ~ K. Sellars and Quarrell [28] 
studied Ni-Au alloys for the entire range of  
composition at 1133 ~ K. 

Pampillo and Vidoz [29] observed the creep 
behaviour of Ni3Fe and NisoFe20 alloys at 840 
to 964 ~ K. The magnetic Curie temperatures for 
these alloys are 843 ~ K and 880 ~ K, respectively. 
For the NisoF%o alloy, the activation area shows 
a slight increase across the Curie point, while no 
change is noticeable for the Ni3Fe alloy. It is 
interesting to note that there is no change in 
activation enthalpy across the Curie point in 
either alloy. 

3,7. Hexagonal Metals, Zn, Mg, Cd, Be, and 
c~-Zr 

Fig. 9 shows the activation areas for hexagonal 
metals. For  Zn, the data are from Tegart and 
Sherby [30], Tegart [31], and Flinn and Munson 
[32]. For  Mg, the data are from Tegart [31] at 
both 550 and 800 ~ K. The data on Cd are from 
Flinn and Duran [33]. Bennett and Summer [34] 
obtained data on Be. For  c~-Zr, Ardell and 
Sherby [35] observed some unusual stress- 
dependence of creep rate. Ardell [36] rationalised 
in terms of a kink mechanism proposed by Gilman 
[37] by showing that lnd is linear with l/or. As 
pointed out by Li [5] such a linear relation 
implies that the activation area is inversely .pro- 
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Figure 9 Act ivat ion area for the creep of hexagonal metals. 

portional to the square of stress as opposed to a 
simple inverse proportionality which leads to the 
usual power law. This is confirmed in fig. 9. 
However, the activation areas for ~-Zr are some- 
what different from those for other hcp metals. 
In a smaller stress range, and 795 to 8930 K 
Bernstein [38] also obtained creep data on c~-Zr 
which agree with those of Ardell and Sherby [35]. 
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Figure 10 Act ivat ion area for the creep of silver bromide; 
data of R. W. Christy. AgBr  single crystals: - - ,  [001] 
compression;  . . . .  , [1 1 1] c o m p r e s s i o n .  

3.8. AgBr Single Crystals, Effect of 
Crystal Orientation 

Fig. 10 shows the activation areas for AgBr 
single crystals compressed along < 0 0 1 >  and 
< 11 1 > directions based on the data of Christy 
[39] at 583 to 683 ~ K. It is seen that there is no 
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definite effect of  the direction of compression on 
the activation area. 
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Figure 11 Ac t i va t i on  area fo r  creep of  semiconduc to rs .  
InSb, Peissker,  Haasen and A lexande r ;  Ge, Penning and 
de Wind ;  Si, Reppich.  

3.9. Semiconductors ,  Ge, Si, and InSb 

Fig. 11 shows the activation areas for semi- 
conductor crystals. The data on Ge and Si are 
taken from Haasen [40] and those on InSb are 
from Peissker et al [41]. 
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Figure 12 Ac t i va t i on  area fo r  the creep of  i ron and steel :  
~ ,  c~Fe; . . . .  , 7Fe; . . . .  , Fe 3.1% Si;  ~ , ~ ,  Fe 
25.5% A I ;  area of  vert ical  hatching,  austeni t ic  Fe base 
al loy;  area of  d iagonal  hatching,  304 steel.  
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3.10. Fe, Fe-Si Fe-AI, and Other Iron Alloys 
Fig. 12 shows the activation areas for iron and 
steel. For ~-Fe, Ishida et al [42] studied in the 
stress range of 0.5 to 2.1 kg mm -2 and the 
temperature range of 878 to 1026 ~ K. Lawley et 
al [43] reported on c~-Fe at 857 ~ K. Sherby and 
Lytton [44] collected creep data for both ~- and 
?-iron, including those of Feltham for y-iron at 
1214 and 1500 ~ K. They extrapolated these data 
to the transformation temperature and calcula- 
tions based on their extrapolation indicate that 
the activation area-stress relation seems to 
remain unchanged through the transformation. 

For  Fe-3.1 ~ Si, Barrett [45] covered a range 
of stress from 0.1 to 2 kg mm -2 at 1093 and 
1298 ~ K. He included also some earlier results of 
Lytton on the same material at 913 ~ K. The 
results on Fe-A1 alloys with A1 ranging from 
19.4 to 25 .5~  were taken from the data of 
Lawley et al [43] at 900 ~ K. Also shown in 
fig. 12 are the activation areas of an austenitic 
Fe-based alloy at 977 ~ K based on data reported 
by Garofalo et al [46]. The grain size in their 
specimens ranged from 9 to 190 Fm andye t  the 
activation area-stress relation does not seem to 
be affected. In 304 stainless steel, Cuddy [8] 
observed that secondary creep rate is uniquely 
related to effective stress (applied stress minus 
internal stress) although specimens were sub- 
jected to different thermomechanical histories 
leading to different internal stresses and sub- 
structures. The activation areas calctflated from 
these data are also shown in fig. 12. It is seen 
that the correlation still holds after correction 
for the internal stress. 

3.11. Bcc Metals, Fe, Ta, Nb, Mo, and W 
Fig. 13 shows the activation areas for bcc metals. 
Data for Fe are those of  Ishida et al [42] 
mentioned before. Data for W are those of Klopp 
et aI [47] at 1366 and 2477 ~ K. Carvalhinhos and 
Argent [48] studied Mo at 1373 to 1513 ~ K, 
while Rawson and Argent [49] studied Nb at 
1223 to 1273 ~ K. Titran [50] reported on Ta- 
alloy (T-222) at 1366 to 1700 ~ K and Green [51] 
reported on Ta at 1963 to 2923 ~ K. 

Low-temperature deformation of bcc metals 
was discussed by Conrad and Hayes [1] who 
collected all the data and calculated activation 
area (activation volume in their terminology) as 
a function of effective stress (applied stress minus 
internal stress). Their collection can be grouped 
into the region between the dotted lines in fig. 13. 
It is seen that such a region is clearly separated 
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from the activation areas in high temperature 
creep. The flow stress temperature curve also 
shows two separate regions. A correction for 
internal stress still has to be made in the case of 
high-temperature creep but it does not seem to 
affect the correlation as shown in the case of  304 
stainless steel. In any case, it does not seem likely 
that the activation areas for low-temperature 
deformation and high-temperature creep would 
merge. Until such a merger is found the mechan- 
ism for high-temperature creep is believed to be 
different from that of low-temperature deforma- 
tion which is widely accepted as the Peierls 
mechanism for bcc metals. 

3.12. All Materials, a General Correlation 
No attempt was made to collect all creep data in 
the previous plots. However, the apparent direct 
relation between activation area and stress and 
the fact that such a relation does not seem to be 
affected by many material variables prompted us 
to suggest a general correlation between activa- 
tion area and stress for all materials. This is 
shown in fig. 14. It is seen that within a scatter 
of ~ 0.5 the logarithms of  the activation areas 
of all materials lie on a straight line (with a slope 
of  about -0 .9 )  when plotted against the 
logarithm of the stress*. In view of the variety of 
materials, compositions, grain sizes, and tem- 
peratures, such a correlation is quite remarkable. 
It seems to imply the existence of  a single dis- 
*Calculat ions based on  recent  da ta  [81, 82] indicate tha t  

location mechanism operative in all crystalline 
materials. 
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4. Discussion 
Most existing theories [52-57] on the non-linear 
stress-dependence of  steady state creep rate 
require variations of microstructure with stress; 
for example, in early theories of Weertmen [52- 
54] the width of  pile-ups, the subgrain size, and 
the distance between pile-up groups are all 
functions of stress. Such structural variations are 
still required in his new theories [56] of creep. 
Barrett and Nix [57] suggested that the density 
of mobile dislocation varies with the 3rd power 
of stress, while Weertman and Weertman [55] 
preferred a 2nd power of  stress. Nabarro [58] 
estimated that the steady state length of  link in 
the dislocation network varies as 1/a. All these 
can be classified as "structure theories" of steady 
state creep. In this class of theories, the funda- 
mental rate mechanism such as the climb of dis- 
locations, or the diffusion of  vacancies, is con- 
sidered to be linear with stress. The non-linearity 
arises from the microstructural variations with 
stress. 

These "structure theories" are supported by 
direct observations such as the subgrain size [56] 
which varies with 1/o and the dislocation density 
[57] which varies with cr 3 in steady state creep. 
Sometimes the generality of the stress-depend- 

the  correlat ion holds  good  for creep o f  U C  and  Z r C  also. 
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ence of microstructure is questioned [45]. The 
main difficulty with the structure theory is that 
the non-linear stress-dependence of creep rate is 
observed not only under conditions in which 
each specimen is crept until the steady state is 
reached, but also under conditions in which the 
stress is suddenly changed so that the micro- 
structure is maintained essentially constant. 
Many examples of these "stress change" tests 
are available [8, 13, 59, 61]. They are ignored 
probably because of the difficulty in conceiving 
that the velocity of dislocations could have a non- 
linear stress-dependence. 

However, non-linear stress-dependence of 
dislocation velocity at low temperatures is well 
accepted [62-65]. Application of such depend- 
ence to the stress-dependence of strain rate is 
also well known [66, 671. Numerous theories [2, 
36, 68] have been proposed for such non-linear 
behaviour. Yet very few theories [76, 69] of this 
nature are intended for high-temperature de- 
formation. They could be classified as "mobility 
theories" for steady state creep. In view of the 
fact that the velocity of dislocations varies non- 
linearly with stress at low temperatures, it seems 
unnecessary to exclude this possibility for high- 
temperature behaviour. Some recent experiments 
[70, 71] on the effect of driving force on the 
mobility of tilt boundaries in A1 seem to suggest 
such a possibility. The non-linear behaviour 
there cannot be easily attributed to structural 
variations. It seems more reasonable to rational- 
ise such behaviour in terms of the mobility of 
dislocations. 

Since the calculation of activation area 
involves the assumption of constant structure, 
the present analysis belongs to the mobility 
theories. However, it is not a mechanistic theory 
except that it requires the motion of dislocations. 
Such motion could be slip or climb and could 
involve obstacles such as impurities, fine par- 
atMes, jogs, nodes, or other dislocations. The 
problem is to find a specific mechanism which is 
consistent with the activation area-stress rela- 
tionship just presented. 

It is not the purpose of this paper to discuss 
such mechanisms. However, it suffices to point 
out that a jog-limited motion of dislocations [72 ] 
with a distribution of jog-spacings could produce 
such an activation area-stress relationship. Since 
the diffusion ofj ogs is the rate-limiting step, both 
the activation enthalpy and the activation 
volume should be similar to those for self- 
diffusion. 
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Some limitations of the jog-dragging model 
have been discussed recently by Weertman [56, 
73, 74]. Although there seems to be no serious 
objection to the model, some refinement could 
be achieved by examining the details. Firstly, 
Cottlell's theory [75] does not rule out the 
possibility that jogs of opposite signs are nearly 
equal in number. Jogs are produced not only by 
intersecting screw dislocations, but also [76, 77] 
by cross-slip, by cutting through a network, or 
by the condensation of vacancies. In all these 
latter cases, equal numbers of jogs of opposite 
signs are produced. As pointed out by Weertman, 
although long screw dislocations may contain a 
net number of jogs of one sign (this net number 
is small, compared to the total number of jogs 
on the dislocation), short segments may contain 
a number of either sign. In other words, jogs of 
opposite signs are about equal in number every- 
where although there may be a net number of 
one sign in some regions and of the other sign 
in other regions. Secondly, when a dislocation 
contains equal numbers of jogs of opposite 
signs, it is not necessarily true that core diffusion 
takes place. It still depends on whether the 
time required for diffusion between jogs of op- 
posite signs is shorter along the dislocation or 
through the lattice. Furthermore, unless jogs of 
alternate signs are arranged along the disloca- 
tion, a group of even three jogs of one sign can 
move only by bulk diffusion of vacancies. 
Thirdly, the jog-dragging model is associated 
with a complicated diffusion problem [57, 77-80]. 
However, because of the existence of jogs of 
both signs, the local concentration of vacan- 
cies is probably not greatly different from the 
equilibrium value. This is indicated in the 
stress-change experiments and the fact that the 
activation enthalpy is very close to that of self- 
diffusion. 

5. Summary and Conclusions 
(i) The activation area for creep, as for low- 
temperature deformation, is strongly dependent 
on stress and weakly dependent on temperature, 
composition, grain size, crystal structure and 
other material variables. 
(ii) Within a scatte~ of 4-0.5 there is a correla- 
tion between the logarithm of activation area 
and the logarithm of shear stress for all metals, 
alloys, semiconductors, and ionic crystals so far 
examined. 
(iii) A jog-limited motion of dislocations with a 
distribution of jog-spacings is consistent with 
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